Поршень двигателя внутреннего сгорания состоит из. Поршень двигателя автомобиля: деталь достойна похвалы

Поршень является одним из самых значимых элементов при преобразовании химической энергии топлива в тепловую, а затем - в механическую, как в прямом, так и в переносном смысле. Моторные характеристики во многом зависят от того, насколько хорошо поршень выполняет свои задачи. Это определяет эффективность и, что ещё важнее, надёжность мотора. Особое значение данный параметр принимает, когда идёт речь о модификациях автомобилей в салонах тюнинга, или о спортивном применении. Конструкторы всегда сталкиваются с проблемой использования специальных поршней , когда повышается мощность. Поршень можно считать одной из самых сложных моторных деталей из-за множества выполняемых функций и достаточно противоречивых свойств. Это в высшей степени подтверждает тот факт, что очень мало автостроителей изготавливают поршни для своих моторов, используя лишь свои силы.

В большинстве случаев они прибегают к услугам специализирующихся на этом деле фирм. О поршнях ходит огромное количество тайн и догадок, которые создаёт разнообразие размеров и форм этой детали. В соответствующем разделе нашего сайта вы сможете найти статью . Изготовить поршень в стандартных условиях машиностроения в тюнинговых компаниях технически сложно, практически невозможно, поэтому большинство компаний этим делом отказывается заниматься. К тому же, производство таких сложных деталей поштучно может быть обременительно с точки зрения финансов. Интуитивно тюнеры понимают, что улучшенные двигатели должны иметь улучшенные поршни.

Устройство поршней

Давайте рассмотрим подробнее, какие к поршням обычно предъявляются требования, и как вообще они устроены.

  • Поршень, во-первых, перемещается в цилиндре, что позволяет совершать механическую работу путём расширения продуктов горения топлива, то есть, сжатых газов

Из этого можно сделать вывод, что он должен сопротивляться давлению газов, обладать термостойкостью и уплотнять канал цилиндра.

  • Во-вторых, поршень должен соответствовать требованиям пары трения, чтобы механические потери и износ стали минимальными.
  • В-третьих, он должен выдерживать реакцию шатуна и механическое воздействие со стороны камеры сгорания.
  • В-четвёртых, поршень должен минимально нагружать инерционными силами криво-шатунный механизм, совершая с высокой скоростью возвратно-подступательные движения.

Получается, что все проблемы, связанные с этой значимой частью двигателя, разделить можно на две категории:

  1. Это механические процессы
  2. Тепловые процессы, причём первая намного обширнее второй. Категории имеют достаточно тесную взаимосвязь. Давайте более подробно рассмотрим первую.

Как известно, топливо сгорает в непоршневом пространстве, и при этом выделяет очень большое количество тепла при каждом цикле работы двигателя. Температура уже сгоревших газов в среднем равна 2000 градусов. Часть энергии перейдёт движущимся частям мотора, а остальная станет нагревать двигатель. Энергия, которая останется в итоге, улетит в трубу вместе с обработанными газами. По законам физики два тела могут передавать друг другу тепло до того момента, пока их температуры полностью не сравняются. Соответственно, если поршень периодически не охлаждать, спустя некоторое время он просто-напросто расплавится. Это очень значимый момент для понимания принципов работы всей поршневой группы.

Особенно это важно тогда, когда мотор форсируется. При увеличении мощности мотора автоматически увеличивается количество генерируемого в камере сгорания тепла за одну временную единицу. Конечно, мы видим очень даже нечасто поршни в расплавленном, однако в любой их проблеме обязательно есть упоминается температура, точно также как скорость присутствует в любом ДТП. Конечно, вина здесь лежит на водителе, однако никто бы не пострадал, если бы автомобиль стоял на месте. Дело в том, что высокие температуры ухудшают характеристики всех материалов. Нагрузка в 100 градусов вызовет упругую деформацию, в 300 градусов - деформирует изделие полностью, а в 450 градусов деформирует её. По этой причине нужно либо применять материалы, которые могут выдержать серьёзные нагрузки от высоких температур, либо принимать меры, предотвращающие рост температуры поршня. Обычно делается и то, и другое. Тем не менее, конструкция поршня должна быть такой, чтобы в необходимых местах было определённое количество металла, который способен противостоять разрушению.

Курс общей физики подтверждает тот факт, что тепловой поток направлен к менее нагретым телам от более нагретых. Таким образом, у нас есть возможность увидеть, как температуры распределяются по поршню во время его работы, и определить значимые конструктивные моменты, которые влияют на его температуру, другими словами, понять, каким образом происходит охлаждение. Мы знаем, что больше всех деталей нагревается рабочее тело, то есть, газы в камере сгорания. Совершенно ясно, что в конце концов тепло окажется передано воздуху, который окружает автомобиль - самому холодному, но при определённых обстоятельствах бесконечно теплоёмкому. Омывая корпус двигателя и радиатор, воздух студит блок цилиндров, охлаждающую жидкость и корпус головки. Нам остаётся только найти мостик, по которому поршень отдаёт своё тепло в антифриз и блок . Для этого существую четыре пути. По своему вкладу они абсолютно разные, однако нужно упомянуть о каждом из них, так как они имеют меньшее или большее значение в зависимости от конструкции двигателя.

Первый путь

Это поршневые кольца, он обеспечивает наибольший поток. Так как первое кольцо расположено ближе к днищу, именно оно играет главную роль. Эта самый короткий путь к охлаждающей жидкости через стенку цилиндра. Одновременно кольца прижаты к стенкам цилиндра и к поршневым канавкам. Они обеспечивают более половины всего теплового потока.

Второй путь

Не так очевиден, однако недооценить его трудно. Второй жидкостью для охлаждения двигателя является масло. Несмотря на свою слабую циркуляцию и относительно небольшой объём, масляный туман имеет доступ к самым нагретым частям мотора. Он от самых горячих точек уносит с собой значительную часть тепла, и отдаёт его в поддон картера. В данном разделе нашего сайта вы сможете найти статью про . При применении масляных форсунок, которые направляют струю на внутреннюю поверхность днища поршня, в теплообмене доля масла нередко достигает 30 - 40 процентов. Разумеется, что если мы нагружаем масло больше степени функции теплоносителя, его необходимо будет остудить. Перегретое масло не только потеряет свои свойства, но так же ещё может привести к неисправности подшипников. И чем выше будет температура масло, тем меньше оно сможет перенести через себя тепла.

Третий путь

Через большие бобышки в палец, потом в шатун, и уже затем в масло. Этот способ не так интересен, ведь на пути имеются значительные тепловые сопротивления в виде стальных деталей и зазоров, которые обладают невысоким коэффициентом сопротивления и значительной протяжённостью.

Четвёртый путь

Не связан с охлаждающей жидкостью или маслом. Часть тепла забирает поступившая в цилиндр после такта впуска свежая топливовоздушная смесь. Количество тепла, которое заберёт эта смесь, зависит от степени открытия дросселя и режима работы. Следует отметить, что тепло, которое образуется при сгорании, также пропорционально заряду. Можно сказать, что данный путь охлаждения отличается скоротечностью, обладает импульсным характером, высокоэффективен, пропорционален последующему нагреванию, благодаря тому факту, что тепло отбирается с той же стороны, с которой нагревается поршень.

Также следует рассказать про стандартный приём, который применяется при настройке моторов спортивного типа. Дело в том, что теплоёмкость смеси в значительной степени определяется её составом. Нередко для нормализации работы мотора нужно совсем немного, на 5 - 10 градусов, снизить внутреннюю температуру. Достигается это при помощи лёгкого забогащения смеси. Причём, данный факт никаким образом не влияет на процесс горения, а температура понижается. Порог детонации отодвигается, калильное зажигание исчезает. В данном случае будет лучше немного богаче, чем немного беднее. Моторы, которые работают на метаноле намного меньше предъявляют требований к системе охлаждения из-за теплоты преобразования, которая в 3 раза больше, чем у бензина.

Следует уделить пристальное внимание процессу передачи тепла по поршневым кольцам по причине его большей значимости. Совершенно ясно, что если перекрыть этот путь по каким либо причинам, длительных форсированных режимов двигатель уже не выдержит. Температура станет очень высокой, поршень начнёт плавиться, а двигатель разрушится. Теперь давайте вспомним о такой характеристики, как процессия, которая, казалось бы, никак не влияет на теплообмен. Если человек сталкивался с подержанным автомобилем, он должен чётко представлять себе, что это такое. Это очень значимый параметр, о котором желает знать любой автовладелец, который заботится о состоянии двигателя своего автомобиля. Компрессия косвенно указывает на степень плотности поршневой группы. Это очень важный параметр, если рассматривать его с точки зрения теплопередачи.

Давайте представим ситуацию, что кольцо к стенке цилиндра не прилегает по всей своей длине. В этом случае сгоревшие газы создадут барьер, который будет мешать передаче тепла через кольцо в стенку цилиндра, начиная от поршня, когда будут прорываться в щель. Это равносильно тому, что вы закроете часть радиатора автомобиля, чтобы у него не было возможности охладиться воздухом.

Если у кольца нет тесного контакта с канавкой, мы будем наблюдать ещё более страшную картину. В тех местах, где у газов есть возможность протекать через канавку мимо кольца, участок поршня просто лишается возможности охлаждаться, попадая в своеобразный тепловой мешок. В результате получаем выкрашивание и прогар части огневого пояса, которая прилегает к месту утечки. Именно по этой причине так много внимания уделяется износу канавки и геометрии цилиндра кольца. И главная причина вовсе не ухудшение энергетики. Ведь небольшое количество газов, которые прорываются в картер, не несёт в себе достаточной энергии, чтобы оказать влияние на потерю давления в такте рабочего хода и, соответственно, на потерю двигателем момента. Тем более, если речь идёт о высокооборотном моторе. Намного больше вреда двигателю наносит небольшая плотность в смысле потери надёжности и жёсткости и локальных тепловых перегрузок. Именно по этой причине очень быстро ломаются восстановленные методом перегильзовки блока или замены колец поршни, которые уже вышли из строя. Именно поэтому в первую очередь у спортивных моторов разрушается цилиндр, который имеет меньшую компрессию.

Здесь, видимо, следует коснуться вопроса, обязательно обсуждаемого при изготовлении специальных поршней для тюнинговых или спортивных приложений. Сколько именно у нового поршня будет колец? Какой толщины будут эти кольца? С точки зрения механики лучше, когда колец немного. Чем уже они будут, тем меньше будет потерь в поршневой группе. Однако при уменьшении толщины и высоты колец, будут ухудшаться условия охлаждения поршня, и увеличиваться тепловое сопротивление. Поэтому при выборе конструкции всегда приходится идти на компромисс. Жёсткость рамок увеличивается с быстроходностью мотора. В данном разделе нашего сайта вы сможете найти статью про . Скоротечность процессов снижает требования к уплотнению. Механические потери растут вместе со скоростью, и их нужно уменьшать, иначе всё, что преобразовалось ранее в механическую мощность, просто не достигнет колёс. Между тем, количество вырабатываемого тепла становится больше, поэтому охлаждающий мостик должен быть расширен. Из этого получаем, что кольца должны быть как узкими, так и широкими. Для быстроходности их нужно два, а для эффективности охлаждения поршня - три. Найти оптимальное решение этой задачи должен конструктор. Результаты его работы покажет сбалансированность двигателя.

На сегодняшний день инженеры, которые работают в крупных научных центрах и производственных компаниях, имеют огромный эмпирический материал, на основе которого создают расчётные методы, позволяющие предсказать поле характеристик и температур конкретного изделия с очень большой точностью. Это доступно очень и очень немногим тюнинговым компаниям. В этой статье специально не упоминаются многие значения конкретных величин, которые бы побудили бы некоторых читателей взять в руки калькуляторы. Делать же тепловые расчёты на пальцах совсем не перспективное и абсолютно никому не нужное занятие. Эта статья раскрывает ту сторону происходящих в двигателе процессов, которая очень редко рассматривается, но всегда подразумевается. Я лишь хотел раскрыть необходимость и важность влияния тепла на общую эффективность работы двигателя. Что касается механической части этого вопроса, то о нём мы подробно поговорим в следующий раз.

Двигатель любой современной машины характеризуется высокой сложностью конструкции и большим числом составных элементов. Несмотря на такую высокую сложность, принцип работы ДВС основывается на базовых понятиях, которые актуальны для машины любого класса и года выпуска. В этой статье мы рассмотрим один из ключевых элементов - поршень двигателя внутреннего сгорания - и расскажем о том, для чего он нужен и из чего состоит.

Строение

Поршень 4-тактного двигателя имеет достаточно сложное строение и, таким образом, целиком устройство включает в себя несколько составных частей. Это позволяет придавать машине оптимальные технические характеристики, а также делать 4-тактный двигатель более устойчивым к нагрузкам, а значит, долговечным.

Основная часть, из которой состоит поршень четырехтактного ДВС, - это его днище. Днище по своему диаметру чуть меньше, чем диаметр цилиндра, что объясняется наличием компрессионных и маслосъемных колец. Днище поршня любого диаметра может иметь разную форму и описание. Так, оно может иметь вогнутую форму, а само углубление может обладать различной конфигурацией.

Основное назначение днища в устройстве поршня в конструкции четырехтактного двигателя - это взаимодействие с топливными парами, которые при сгорании толкают поршень и заставляют его быть в движении на протяжении всего периода работы. Форма днища в поршне 4-тактного мотора диктуется большим количеством факторов. Обычно это зависит от количества свечей, мощности, диаметра самого поршня и многих других нюансов.

Помимо днища, в поршне, сколько бы миллиметров он ни насчитывал в диаметре, обязательно присутствует уплотнительная часть, которая включает в себя такие устройства, как компрессионные и маслосъемные кольца. Компрессионные кольца вкладываются в специальные выточенные желобки, которые по своему диаметру чуть отличаются от диаметра головки поршня. Их задача - не позволять смешиваться отработанной и свежей смеси, а также сохранять давление во время горения топлива.

В чем же заключается назначение компрессионных колец? Компрессионные кольца в поршне 4-тактного двигателя необходимы для того, чтобы эффективность работы мотора была максимальной, и вся энергия сгоревшего топлива была направлена на то, чтобы поршень перемещался. По этой причине к материалам, из которых изготавливаются такие кольца в четырехтактном двигателе, предъявляются серьезные и строгие требования.

Помимо компрессионных, поршень 4-тактного двигателя в обязательном порядке оборудуется такими конструкциями, как кольца маслосъемные, которые обладают чуть большим диаметром, чем сам поршень. Они необходимы для того, чтобы смазка, которая постоянно циркулирует в моторе для предотвращения трения и перегрева, оставалась на трущихся поверхностях в нужном количестве и не накапливалась в камере сгорания. Благодаря этому, удается избежать масляного нагара, а расход смазки резко сокращается.

Как это работает?

Ход поршня четырехтактного двигателя представляет собой цикл, в течение которого коленчатый вал двигателя совершает один полный оборот. За это время топливная смесь, которая поставляется карбюратором или инжектором, полностью сгорает и выводится в выпускной коллектор, где проходит через глушитель и рассеивается в окружающую среду.

Ход поршня характеризуется исключительно движением вверх и вниз. Такое положение дел касается и четырехтактных, и всех остальных разновидностей моторов. Как уже было сказано, поступательное движение обуславливается исключительно процессами горения, которые протекают при высокой температуре.

Когда ход поршня производится в вертикальном направлении, коленчатый вал, с которым он соединяется, совершает вращательное движение. По этой причине конструкторами и инженерами был введен кривошип, который позволяет приводить вал в движение и заставлять его вращать колеса все время, пока четырехтактный двигатель запущен.

Обычно кривошип связан с головкой поршня шарнирно: ход поршня достаточно свободен для того, чтобы кривошип смещался на острый угол относительно оси симметрии и был в движении беспрестанно. Шатун представляет собой небольшой металлический стержень, который на двух концах оборудован вставками под шарнир. С одной стороны шатун движется относительно поршня, который движется вверх и вниз.

С противоположного конца шатун подвижно закрепляется к коленчатому валу. Между шатуном и валом располагаются так называемые вкладыши, устройство которых позволяет переносить высокие температуры и не истираться даже при пиковых нагрузках. Когда настает пора ремонта, вкладыши меняются на новые, и таких циклов обслуживания до замены коленчатого вала может быть несколько.

Материал изготовления

Поршень 4-тактного двигателя, а вернее, материал, из которого он изготовлен, должен отвечать большому числу требований. К примеру, материал должен быть устойчивым к серьезным перегрузкам по температуре, ведь горение топлива вызывает сильнейший перегрев, к которому не готово большинство существующих материалов.

Кроме того, такие материалы должны обладать невысокой плотностью. Это нужно для максимального облегчения поршня с целью снижения нагрузки на детали и суммарного расхода топлива.

Какие же материалы отвечают подобным требованиям и широко применяются на четырехтактных двигателях внутреннего сгорания? Самым распространенным таким материалом является чугун. Будучи относительно недорогим, он отлично справляется со всеми своими задачами и выдерживает высокие температуры. Как показывает практика, ресурс такой детали достаточно высок, а надежность отвечает всем предъявляемым требованиям, поэтому поршень из чугуна можно найти на большинстве автомобилей.

Тем не менее прогресс не стоит на месте, и на смену чугуну пришел алюминий, а вернее, его специальная разновидность. Преимущество такого материала в том, что он ощутимо легче, однако по прочности ничуть не уступает привычному чугуну. По этой причине на спортивные машины в четырехтактные моторы ставят именно алюминиевые поршни. Такое решение позволило повысить мощность, увеличить ресурс и снизить расход топлива. Стоит отметить, что на обычные гражданские машины поршни из алюминия устанавливаются также нередко, что говорит об их очевидных преимуществах.

Резюме

Поршень двигателя - это важная деталь, без которой нормальная работа мотора оказалась бы невозможной. В связи с этим мировые автопроизводители стараются приблизить существующие решения к совершенству. Это позволяет добиться лучших характеристик при более высоком ресурсе, что говорит о том, что прогресс не стоит на месте.

Большинство автомобилей заставляет перемещаться поршневой двигатель внутреннего сгорания (сокращённо ДВС) с кривошипно-шатунным механизмом. Такая конструкция получила массовое распространение в силу малой стоимости и технологичности производства, сравнительно небольших габаритов и веса.

По виду применяемого топлива ДВС можно разделить на бензиновые и дизельные. Надо сказать, что бензиновые двигатели великолепно работают на . Такое деление непосредственно сказывается на конструкции двигателя.

Как устроен поршневой двигатель внутреннего сгорания

Основа его конструкции — блок цилиндров. Это корпус, отлитый из чугуна, алюминиевого или иногда магниевого сплава. Большинство механизмов и деталей других систем двигателя крепятся именно к блоку цилиндров, или располагаются внутри его.

Другая крупная деталь двигателя, это его головка. Она находится в верхней части блока цилиндров. В головке также располагаются детали систем двигателя.

Снизу к блоку цилиндра крепится поддон. Если эта деталь воспринимает нагрузки при работе двигателя, её часто называют поддоном картера, или картером.

Все системы двигателя

  1. кривошипно-шатунный механизм;
  2. механизм газораспределения;
  3. система питания;
  4. система охлаждения;
  5. система смазки;
  6. система зажигания;
  7. система управления двигателем.

Кривошипно-шатунный механизм состоит из поршня, гильзы цилиндра, шатуна и коленчатого вала.

Кривошипно-шатунный механизм:
1. Расширитель маслосъёмного кольца. 2. Кольцо поршневое маслосъёмное. 3. Кольцо компрессионное, третье. 4. Кольцо компрессионное, второе. 5. Кольцо компрессионное, верхнее. 6. Поршень. 7. Кольцо стопорное. 8. Палец поршневой. 9. Втулка шатуна. 10. Шатун. 11. Крышка шатуна. 12. Вкладыш нижней головки шатуна. 13. Болт крышки шатуна, короткий. 14. Болт крышки шатуна, длинный. 15. Шестерня ведущая. 16. Заглушка масляного канала шатунной шейки. 17. Вкладыш подшипника коленчатого вала, верхний. 18. Венец зубчатый. 19. Болты. 20. Маховик. 21. Штифты. 22. Болты. 23. Маслоотражатель, задний. 24. Крышка заднего подшипника коленчатого вала. 25. Штифты. 26. Полукольцо упорного подшипника. 27. Вкладыш подшипника коленчатого вала, нижний. 28. Противовес коленчатого вала. 29. Винт. 30. Крышка подшипника коленчатого вала. 31. Болт стяжной. 32. Болт крепления крышки подшипника. 33. Вал коленчатый. 34. Противовес, передний. 35. Маслоотрожатель, передний. 36. Гайка замковая. 37. Шкив. 38. Болты.

Поршень расположен внутри гильзы цилиндра. При помощи поршневого пальца он соединен с шатуном, нижняя головка которого крепится к шатунной шейке коленчатого вала. Гильза цилиндра представляет собой отверстие в блоке, или чугунную втулку, вставляемую в блок.

Гильза цилиндров с блоком

Гильза цилиндра сверху закрыта головкой. Коленчатый вал также крепится к блоку в нижней его части. Механизм преобразует прямолинейное движение поршня во вращательное движение коленчатого вала. То самое вращение, которое, в конечном счете, заставляет крутиться колеса автомобиля.

Газораспределительный механизм отвечает за подачу смеси паров топлива и воздуха в пространство над поршнем и удаление продуктов горения через клапаны, открываемые строго в определенный момент времени.

Система питания отвечает в первую очередь за приготовление горючей смеси нужного состава. Устройства системы хранят топливо, очищают его, смешивают с воздухом так, чтобы обеспечить приготовление смеси нужного состава и количества. Также система отвечает за удаление из двигателя продуктов горения топлива.

При работе двигателя образуется тепловая энергия в количестве большем, чем двигатель способен преобразовать в механическую энергию. К сожалению, так называемый термический коэффициент полезного действия, даже лучших образцов современных двигателей не превышает 40%. Поэтому приходится большое количество «лишней» теплоты рассеивать в окружающем пространстве. Именно этим и занимается , отводит тепло и поддерживает стабильную рабочую температуру двигателя.

Система смазки . Это как раз тот случай: «Не подмажешь, не поедешь». В двигателях внутреннего сгорания большое количество узлов трения и так называемых подшипников скольжения: есть отверстие, в нем вращается вал. Не будет смазки, от трения и перегрева узел выйдет из строя.

Система зажигания призвана поджечь, строго в определенный момент времени, смесь топлива и воздуха в пространстве над поршнем. такой системы нет. Там топливо самовоспламеняется при определенных условиях.

Видео:

Система управления двигателем при помощи электронного блока управлении (ЭБУ) управляет системами двигателя и координирует их работу. В первую очередь это приготовление смеси нужного состава и своевременное поджигание её в цилиндрах двигателя.

В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.

Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.

  1. При поступательном движении поршень уменьшает объем камеры сгорания, сжимая топливную смесь, что необходимо для процесса сгорания (в дизельных моторах воспламенение смеси и вовсе происходит от ее сильного сжатия).
  2. После воспламенения топливовоздушной смеси в камере сгорания резко возрастает давление. Стремясь увеличить объем, оно выталкивает поршень обратно, и он совершает возвратное движение, передающееся через шатун коленвалу.

Что такое поршень двигателя внутреннего сгорания автомобиля?

Устройство детали включает в себя три составляющие:

  1. Днище.
  2. Уплотняющая часть.
  3. Юбка.

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

Днище

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

Уплотняющая часть

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать причиной их разрушения.


Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Вас также заинтересует:

Юбка

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Типы поршней

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Материалы изготовления

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

  • возможность использования только в дизельных двигателях;
  • больший вес по сравнению с литыми алюминиевыми;
  • необходимость использования поршневых колец из жаростойких материалов;
  • более высокая цена;

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

Видео: Принцип работы поршня двигателя. Устройство

Самые известные и широко применяемые во всем мире механические устройства — это двигатели внутреннего сгорания (далее ДВС). Ассортимент их обширен, а отличаются они рядом особенностей, например, количеством цилиндров, число которых может варьироваться от 1 до 24, используемым топливом.

Работа поршневого двигателя внутреннего сгорания

Одноцилиндровый ДВС можно считать самым примитивным, несбалансированными и имеющими неравномерный ход, несмотря на то, что он является отправной точкой в создании многоцилиндровых двигателей нового поколения. На сегодняшний день они применяются в авиамоделировании, в производстве сельскохозяйственных, бытовых и садовых инструментов. Для автомобилестроения массово применяются четырехцилиндровые двигатели и более солидные аппараты.

Как функционирует и из чего состоит?

Поршневой двигатель внутреннего сгорания имеет сложное строение и состоит из:

  • Корпуса, включающего в себя блок цилиндров, головку блока цилиндров;
  • Газораспределительного механизма;
  • Кривошипно-шатунного механизма (далее КШМ);
  • Ряда вспомогательных систем.

КШМ является связующим звеном между энергией выделяемой при сгорании топливо-воздушной смеси (далее ТВС) в цилиндре и коленвалом, обеспечивающим движение автомобиля. Газораспределительная система отвечает за газообмен в процессе функционирования агрегата: доступ атмосферного кислорода и ТВС в двигатель, и своевременное выведение газов, образовавшихся во время горения.

Устройство простейшего поршневого двигателя

Вспомогательные системы представлены:

  • Впускной, обеспечивающей поступление кислорода в двигатель;
  • Топливной, представленной системой впрыска топлива ;
  • Зажигание, обеспечивающее искру и воспламенение ТВС для двигателей, работающих на бензине (дизельные двигатели отличаются самовоспламенением смеси от высокой температуры);
  • Системой смазки, обеспечивающую уменьшение трения и износа соприкасающихся металлических деталей с помощью машинного масла;
  • Системой охлаждения , которая не допускает перегрева рабочих деталей двигателя, обеспечивая циркуляцию специальных жидкостей типа тосол;
  • Выпускной системой, обеспечивающей выведение газов в соответствующий механизм, состоящей из выпускных клапанов;
  • Системой управления, обеспечивающей наблюдение за функционирование ДВС на уровне электроники.

Основным рабочим элементом в описываемом узле считается поршень двигателя внутреннего сгорания , который и сам является сборной деталью.

Устройство поршня ДВС

Пошаговая схема функционирования

Работа ДВС основывается на энергии расширяющихся газов. Они являются результатом сгорания ТВС внутри механизма. Это физический процесс принуждает поршень к движению в цилиндре. Топливом в этом случае могут служить:

  • Жидкости (бензин, ДТ);
  • Газы;
  • Монооксид углерода как результат сжигания твердого топлива .

Работа двигателя — это непрерывный замкнутый цикл, состоящий из определенного количества тактов. Наиболее распространены ДВС двух видов, различающихся количеством тактов:

  1. Двухтактные, производящие сжатие и рабочий ход;
  2. Четырехтактные – характеризуются четырьмя одинаковыми по продолжительности этапами: впуск, сжатие, рабочий ход, и завершающий – выпуск, это свидетельствует о четырехкратном изменении положения основного рабочего элемента.

Начало такта определяется расположением поршня непосредственно в цилиндре:

  • Верхняя мертвая точка (далее ВМТ);
  • Нижняя мертвая точка (далее НМТ).

Изучая алгоритм работы четырехтактного образца можно досконально понять принцип работы двигателя автомобиля .

Принцип работы двигателя автомобиля

Впуск происходит путем прохождения из верхней мёртвой точки через всю полость цилиндра рабочего поршня с одновременным втягиванием ТВС. Основываясь на конструкционных особенностях, смешивание входящих газов может происходить:

  • В коллекторе впускной системы, это актуально, если двигатель бензиновый с распределенным или центральным впрыском;
  • В камере сгорания, если речь идет о дизельном двигателе, а также двигателе, работающем на бензине, но с непосредственным впрыском.

Первый такт проходит с открытыми клапанами впуска газораспределительного механизма. Количество клапанов впуска и выпуска, время их пребывания в открытом положении, их размер и состояние износа являются факторами, влияющими на мощность двигателя. Поршень на начальном этапе сжатия размещён в НМТ. Впоследствии он начинает перемещаться вверх и сжимать накопившуюся ТВС до размеров, определенных камерой сгорания. Камера сгорания – это свободное пространство в цилиндре, остающееся между его верхом и поршнем в верхней мертвой точке.

Второй такт предполагает закрытие всех клапанов двигателя. Плотность их прилегания напрямую влияет на качество сжатия ТВС и ее последующее возгорание. Также на качество сжатия ТВС оказывает большое влияние уровень износа комплектующих двигателя. Она выражается в размерах пространства между поршнем и цилиндром, в плотности прилегания клапанов. Уровень компрессии двигателя является главным фактором, оказывающим влияние на его мощность. Он измеряется специальным прибором компрессометром.

Рабочий ход начинается когда к процессу подключается система зажигания , генерирующая искру. Поршень при этом находится в максимальной верхней позиции. Смесь взрывается, выделяются газы, создающие повышенное давление, и поршень приводится в движение. Кривошипно-шатунного механизм в свою очередь активирует вращение коленвала, обеспечивающего движение автомобиль. Все клапаны систем в это время находятся в закрытом положении.

Выпускной такт является завершающим в рассматриваемом цикле. Все выпускные клапаны находятся в открытом положении, давая возможность двигателю «выдохнуть» продукты горения. Поршень возвращается в исходную точку и готов к началу нового цикла. Это движение способствует выведению в выпускную систему, а затем в окружающую среду, отработанных газов.

Схема работы двигателя внутреннего сгорания , как уже говорилось выше, основана на цикличности. Рассмотрев детально, как работает поршневой двигатель , можно резюмировать, что КПД такого механизма не более 60%. Обусловлен такой процент тем, что в отдельно взятый момент рабочий такт выполняется лишь в одном цилиндре.

Не вся энергия, полученная в это время, направлена на движение автомобиля. Часть её расходуется на поддержание в движении маховика, который по инерции обеспечивает работу автомобиля во время трех других тактов.

Некоторое количество тепловой энергии невольно тратится на нагревание корпуса и отработанных газов. Вот почему мощность двигателя автомобиля определяется количеством цилиндров, и как следствие, так называемым объемом двигателя, рассчитанным по определенной формуле как суммарный объем всех рабочих цилиндров.



error: Контент защищен !!