Метеоры в картинках и фотографиях. Чем метеор отличается от метеорита? Описание, примеры метеоров и метеоритов Время сгорания метеора в атмосфере

Ясной темной ночью, особенно в середине августа, ноября и декабря, можно увидеть, как прочерчивают небо «падающие звезды» — это метеоры, интересное природное явление, известное человеку с незапамятных времен.

Метеоры, особенно в последние годы, привлекают пристальное внимание астрономической науки. Они уже много рассказали и о нашей Солнечной системе и о самой Земле, в частности о земной атмосфере.

Более того, метеоры, образно говоря, вернули долг, возместили средства, затраченные на их изучение, сделав вклад в решение некоторых практических задач науки и техники.

Исследование метеоров активно развивается в ряде стран, некоторым из этих исследований посвящен наш короткий рассказ. Начнем мы его с уточнения терминов.

Объект, движущийся в межпланетном пространстве и имеющий размеры, как говорится, «больше молекулярных, но меньше астероидальных», называют метеороидом, или метеорным телом. Вторгаясь в земную атмосферу, метеороид (метеорное тело) накаляется, ярко светится и прекращает свое существование, превратившись в пыль и пары.

Световое явление, вызванное сгоранием метеорного тела, называют метеором. Если метеороид имеет сравнительно большую массу и если его скорость относительно невелика, то иногда часть метеорного тела, не успев полностью испариться в атмосфере, падает на поверхность Земли.

Эту выпавшую часть называют метеоритом. Чрезвычайно яркие метеоры, имеющие вид огненного шара с хвостом или горящей головешки, называют болидами. Яркие болиды иногда видны даже днем.

Для чего изучают метеоры

Метеоры наблюдают и изучают в течение столетий, но только в последние три-четыре десятилетия стали четко выясняться природа, физические свойства, характеристики орбит и происхождение тех космических тел, которые являются источниками метеоритов. Интерес исследователей к метеорным явлениям связан с несколькими группами научных проблем.

Прежде всего, изучение траектории метеоров, процессов свечения и ионизации вещества метеороидов, важно для выяснения их физической природы, а они, метеорные тела, как-никак есть прибывшие к Земле «пробные порции» вещества из далеких районов Солнечной системы.

Далее — исследование ряда физических явлений, сопровождающих полет метеорного тела, дает богатый материал для изучения физических и динамических процессов, происходящих в так называемой метеорной зоне нашей атмосферы, то есть на высотах 60-120 км. Здесь в основном и наблюдаются метеоры.

Причем для этих слоев атмосферы метеоры, пожалуй, остаются наиболее эффективным «исследовательским инструментом», даже на фоне нынешнего размаха исследований с помощью космических аппаратов.

Прямыми методами изучения верхних слоев земной атмосферы при помощи искусственных спутников Земли и высотных ракет начали широко пользоваться много лет назад, со времени Международного Геофизического года.

Однако искусственные спутники дают сведения об атмосфере на высотах более 130 км, на меньших высотах спутники просто сгорают в плотных слоях атмосферы. Что же касается ракетных измерений, то они проводятся только над фиксированными пунктами земного шара и носят кратковременный характер.

Метеорные тела — полноправные жители Солнечной системы, они обращаются по геоцентрическим орбитам, имеющим обычно форму эллипса.

Оценивая, как общее число метеороидов распределяется по группам с разными массами, скоростями, направлениями, можно не только изучать весь комплекс малых тел Солнечной системы, но еще и создать основу для построения теории происхождения и эволюции метеорного вещества.

В последнее время интерес к метеорам возрос еще и в связи с интенсивным изучением околоземного космического пространства. Важной практической задачей стала оценка так называемой метеорной опасности на различных космических трассах.

Это, конечно, лишь частный вопрос, у космических и метеорных исследований очень много точек соприкосновения, и изучение метеорных частиц прочно вошло в космические программы. Так, например, с помощью спутников, космических зондов и геофизических ракет получены ценные сведения о движущихся в межпланетном пространстве мельчайших метеороидах.

Вот одна лишь цифра: устанавливаемые на космических аппаратах датчики позволяют регистрировать удары метеороидов, размеры которых измеряются тысячными долями миллиметра (!).

Как наблюдают метеоры

В ясную безлунную ночь можно заметить метеоры до 5-й и даже 6-й звездной величины — они имеют такую же яркость, как самые слабые звезды, различимые невооруженным глазом. Но в основном невооруженным глазом видны несколько более яркие метеоры, ярче 4-й звездной величины; в течение часа в среднем можно заметить около 10 таких метеоров.

А всего в атмосфере Земли за сутки бывает около 90 миллионов метеоров, которые можно было бы увидеть в ночное время. Общее число метеороидов различных размеров, вторгающихся за сутки в земную атмосферу, исчисляется сотнями миллиардов.

В метеорной астрономии условились де лить метеоры на два типа. Метеоры, которые наблюдаются каждую ночь и движутся в самых разных направлениях, называют случайными, или спорадическими. Другой тип — периодические, или поточные, метеоры, они появляются в одно и то же время года и из определенного небольшого участка звездного неба — радианта. Слово это — радиант — в данном случае означает «излучающий участок».

Метеорные тела, порождающие спорадические метеоры, движутся в пространстве независимо друг от друга по самым разнообразным орбитам, а периодические — по почти параллельным путям, которые как раз и исходят из радианта.

Метеорным потокам дают названия по созвездиям, в которых расположены их радианты. Например, Леониды — метеорный поток с радиантом в созвездии Льва, Персеиды — в созвездии Персея, Ориониды — в созвездии Ориона и так далее.

Зная точное положение радианта, момент и скорость полета метеора, можно вычислить элементы орбиты метеороида, то есть выяснить характер его движения в межпланетном пространстве.

Визуальные наблюдения позволили получить важную информацию о суточных и сезонных изменениях общего количества метеоров, о распределении радиантов по небесной сфере. Но главным образом для изучения метеоров используются фотографические, радиолокационные, а в последние годы и электронно-оптические и телевизионные методы наблюдений.

Систематическая фоторегистрация метеоров началась лет сорок назад, используются для этой цели, так называемые, метеорные патрули. Метеорный патруль — это система из нескольких фотографических агрегатов, а каждый агрегат состоит обычно из 4-6 широкоугольных фотографических камер, устанавливаемых так, чтобы все они вместе охватывали максимально возможную область неба.

Наблюдая метеор из двух пунктов, удаленных друг от друга на 30-50 км, по фотоснимкам на фоне звезд легко определить его высоту, траекторию в атмосфере и радиант.

Если перед камерами одного из агрегатов патруля разместить обтюратор, то есть вращающийся затвор, то можно определить и скорость метеороида — вместо непрерывного следа на фотопленке получится пунктирная линия, причем длина штрихов как раз и будет пропорциональна скорости метеорного тела.

Если перед объективами фотокамер другого агрегата расположить призмы или дифракционные решетки, то на пластинке появится спектр метеора, подобно тому, как на белой стене появляется спектр солнечного зайчика, прошедшего через призму. А по спектрам метеора можно определить химический состав метеороида.

Одно из важных достоинств радиолокационных методов — это возможность наблюдать метеоры в любую погоду и круглые сутки. Кроме того, радиолокация позволяет регистрировать очень слабые метеоры до 12-15-звездной величины, порождаемые метеороидами с массой в миллионные доли грамма и даже меньше.

Радиолокатор «засекает» не само метеорное тело, а его след: при движении в атмосфере испарившиеся атомы метеорного тела сталкиваются с молекулами воздуха, возбуждаются и превращаются в ионы, то есть подвижные заряженные частицы.

Образуются ионизованные метеорные следы, имеющие длину несколько десятков километров и начальные радиусы порядка метра; это своего рода висящие (конечно, недолго!) атмосферные проводники, или точнее полупроводники — в них можно насчитать от 10б до 1016 свободных электронов или ионов на каждый сантиметр длины следа.

Такой концентрации свободных зарядов вполне достаточно, чтобы от них, как от проводящего тела, отражались радиоволны метрового диапазона. Вследствие диффузии и других явлений ионизированный след быстро расширяется, его электронная концентрация падает и под действием ветров в верхней атмосфере след рассеивается.

Это позволяет использовать радиолокацию для изучения скорости и направления воздушных течений, например, для исследования глобальной циркуляции верхней атмосферы.

В последние годы все активней ведутся наблюдения очень ярких болидов, которые иногда сопровождаются выпадением метеоритов. В нескольких странах организованы болидные сети наблюдений с камерами «всего неба».

Они действительно контролируют весь небосвод, но регистрируют только очень яркие метеоры. В такие сети входят 15-20 пунктов, расположенных на расстоянии 150-200 километров, они охватывают большие территории, так как вторжение в земную атмосферу крупного метеороида — явление сравнительно редкое.

И вот что интересно: из сфотографированных нескольких сот ярких болидов только три сопровождались падением метеорита, хотя скорости крупных метеороидов были не очень большими. Это означает, что надземный взрыв Тунгусского метеорита 1908 года — явление типичное.

Структура и химический состав метеорных тел

Вторжение метеорного тела в земную атмосферу сопровождается сложными процессами его разрушения — плавлением, испарением, распылением и дроблением. Атомы метеорного вещества при столкновении с молекулами воздуха ионизируются и возбуждаются: свечение метеора в основном связано с излучением возбужденных атомов и ионов, они двигаются со скоростями самого метеорного тела и имеют кинетическую энергию от нескольких десятков до сотен электрон-вольт.

Фотографические наблюдения метеоров по методу мгновенной экспозиции (порядка 0,0005 сек.), впервые в мире разработанному и реализованному в Душанбе и Одессе, наглядно показали разнообразные виды дробления метеорных тел в земной атмосфере.

Такое дробление может объясняться как сложным характером самих процессов разрушения метеорных тел в атмосфере, так и рыхлой структурой метеороидов и их низкой плотностью. Особенно низка плотность метеорных тел кометного происхождения.

В спектрах метеоров главным образом видны яркие эмиссионные линии. Среди них обнаружены линии нейтральных атомов железа, натрия, марганца, кальция, хрома, азота, кислорода, алюминия и кремния, а также линии ионизированных атомов магния, кремния, кальция и железа. Подобно метеоритам, метеорные тела можно разделить на две большие группы — железные и каменные, причем каменных метеороидов значительно больше, чем железных.

Метеорное вещество в межпланетном пространстве

Анализ орбит спорадических метеороидов показывает, что метеорное вещество концентрируется в основном в плоскости эклиптики (плоскость, в которой лежат орбиты планет) и движется вокруг Солнца в ту же сторону, что и сами планеты. Это важный вывод, он доказывает общность происхождения всех тел Солнечной системы, включая и такие мелкие, как метеороиды.

Наблюдаемая скорость метеороидов относительно Земли лежит в пределах 11-72 км/сек. Но скорость движения Земли по ее орбите равна 30 км/сек., а значит, скорость метеороидов относительно Солнца не превышает 42 км/сек. То есть она меньше параболической скорости, которая необходима для выхода из Солнечной системы.

Отсюда вывод — метеороиды не приходят к нам из межзвездного пространства, они принадлежат Солнечной системе и двигаются вокруг Солнца по замкнутым эллиптическим орбитам. На основе фотографических и радиолокационных наблюдений уже определены орбиты нескольких десятков тысяч метеороидов.

Наряду с гравитационным притяжением Солнца и планет на движение метеороидов, в особенности мелких, существенное влияние оказывают силы, вызванные воздействием электромагнитного и корпускулярного излучения Солнца.

Так, в частности, под действием светового давления мельчайшие метеорные частицы размерами менее 0,001 мм выталкиваются из пределов Солнечной системы. На движение маленьких частиц, кроме того, значительное влияние оказывает и тормозящее действие лучевого давления (эффект Пойнтинга — Робертсона), и из-за этого орбиты частиц постепенно «сжимаются», они все более приближаются к Солнцу.

Время жизни метеороидов во внутренних областях Солнечной системы невелико, и, следовательно, запасы метеорного вещества должны каким-то образом постоянно пополняться.

Можно указать три главных источника такого пополнения:

1) распад кометных ядер;

2) дробление астероидов (напомним — это малые планеты, двигающиеся в основном между орбитами Марса и Юпитера) в результате их взаимных столкновений;

3) приток очень мелких метеороидов с далеких окрестностей Солнечной системы, где, вероятно, находятся остатки вещества, из которого образовалась Солнечная система.

С давних времен существует поверье, что, если загадать желание, смотря на падающую звезду, оно обязательно сбудется. А задумывались ли вы о природе явления падающих звезд? В этом уроке мы откроем для себя, что же такое звездный дождь, метеориты и метеоры.

Тема: Вселенная

Урок: Метеоры и метеориты

Явления, наблюдающиеся в виде кратковременных вспышек, возникающие при сгорании в земной атмосфере мелких метеорных объектов (например, осколков комет или астероидов). Метеоры проносятся по небу, иногда оставляя за собой на несколько секунд узкий светящийся след, после чего исчезают. В обиходе их нередко называют падающими звездами. Долгое время метеоры считались обычным атмосферным явлением типа молнии. Лишь в самом конце XVIII века, благодаря наблюдениям одних и тех же метеоров из различных пунктов, были впервые определены их высоты и скорости. Выяснилось, что метеоры являются космическими телами, которые приходят в атмосферу Земли извне со скоростями от 11 км/сек до 72 км/сек, и на высоте около 80 км сгорают в ней. Серьезно заниматься исследованием метеоров астрономы начали только в XX веке.

Распределение по небу и частота появления метеоров зачастую не являются равномерными. Систематически возникают так называемые метеорные потоки, метеоры которых появляются примерно в одной и той же части неба на протяжении определенного промежутка времени (обычно несколько ночей). Таким потокам присваиваются названия созвездий. Например, метеорный поток, возникающий ежегодно примерно с 20 июля по 20 августа, называется Персеидами. Метеорные потоки Лирид (середина апреля) и Леонид (середина ноября) получили свое название соответственно от созвездий Лиры и Льва. В разные годы метеоритные потоки проявляют различную активность. Изменение активности метеорных потоков объясняется неравномерным распределением метеорных частиц в потоках вдоль эллиптической орбиты, пересекающей земную.

Рис. 2. Метеорный поток Персеиды ()

Спорадическими называются метеоры, не принадлежащие к потокам. В атмосфере Земли в течение суток вспыхивает в среднем около 108 метеоров ярче 5 звездной величины. Яркие метеоры возникают реже, слабые - чаще. Болиды (очень яркие метеоры) могут быть видны даже днем. Иногда болиды сопровождаются выпадением метеоритов. Нередко появление болида сопровождается довольно мощной ударной волной, звуковыми явлениями, а также образованием дымового хвоста. Происхождение и физическое строение больших тел, наблюдаемых как болиды, вероятно, довольно различно по сравнению с частицами, вызывающими метеорные явления.

Следует различать метеоры и метеориты. Метеором называется не сам объект (то есть метеорное тело), а явление, то есть его светящийся след. Это явление будет называться метеором независимо от того, улетит ли метеорное тело из атмосферы в космическое пространство, сгорит ли в ней или упадет на Землю в виде метеорита.

Физическая метеорология - это наука, которая изучает прохождение метеорита через слои атмосферы.

Метеорная астрономия - это наука, которая изучает происхождение и эволюцию метеоритов

Метеорная геофизика - это наука, которая изучает влияние метеоров на атмосферу Земли.

— тело космического происхождения, упавшее на поверхность крупного небесного объекта.

По своему химическому составу и структуре метеориты разделяют на три большие группы: каменные, или аэролиты, железокаменные, или сидеролиты, и железные - сидериты. Мнение большинства исследователей сходится в том, что в космическом пространстве преобладают каменные метеориты (80-90% от общего числа), хотя железных метеоритов собрано больше, чем каменных. Относительное количество различных типов метеоритов определить довольно сложно, так как железные метеориты находить легче, чем каменные. Кроме того, каменные метеориты при прохождении сквозь атмосферу обычно разрушаются. При вхождении метеорита в плотные слои атмосферы, его поверхность настолько нагревается, что начинает плавиться и испаряться. С железных метеоритов струи воздуха сдувают крупные капли расплавленного вещества, при этом следы этого сдувания остаются, и их можно наблюдать в виде характерных выемок. Каменные метеориты часто дробятся, рассыпая на поверхность Земли целый дождь из обломков различных размеров. Железные метеориты более прочные, но и они иногда разламываются на отдельные куски. Один из самых крупных железных метеоритов, упавший 12 февраля 1947 года в районе Сихотэ-Алиня, был обнаружен в виде большого количества отдельных обломков, общий вес которых составляет 23 тонны, при этом, естественно, были найдены не все осколки. Самый большой из известных метеоритов, Гоба (в Юго-Западной Африке), представляет собой глыбу весом в 60 тонн.

Рис. 3. Гоба - самый большой найденный метеорит ()

Крупные метеориты при ударе о Землю зарываются на значительную глубину. При этом в атмосфере Земли на определенной высоте космическая скорость метеорита обычно гасится, после чего, затормозившись, он падает по законам свободного падения. Что же произойдет при столкновении с Землей большого метеорита, например, весом в 105-108 т? Такой гигантский объект практически беспрепятственно прошел бы сквозь атмосферу, и при его падении произошел бы сильнейший взрыв с образованием воронки (кратера). Если такие катастрофические явления когда-либо происходили, мы должны были бы находить метеоритные кратеры на поверхности Земли. Такие кратеры действительно существуют. Так, воронка крупнейшего, Аризонского, кратера имеет диаметр 1200 м и глубину около 200 м. По приблизительной оценке, его возраст составляет около 5 тысяч лет. Не так давно были обнаружены еще несколько более древних и разрушенных метеоритных кратеров.

Рис. 4. Аризонский метеоритный кратер ()

Ударный кратер (метеоритный кратер) — углубление на поверхности космического тела, результат падения другого тела меньшего размера.

Чаще всего звёздным или метеорным дождём называют метеорный поток большой интенсивности (с зенитным часовым числом до тысячи метеоров в час).

Рис. 5. Звездный дождь ()

1. Мельчаков Л.Ф., Скатник М.Н. Природоведение: учеб. для 3,5 кл. сред. шк. - 8-е изд. - М.: Просвещение, 1992. - 240 с.: ил.

2. Бахчиева О.А., Ключникова Н.М., Пятунина С.К., и др. Природоведение 5. - М.: Учебная литература.

3. Еськов К.Ю. и др. Природоведение 5 / Под ред. Вахрушева А.А. - М.: Баласс

1. Мельчаков Л.Ф., Скатник М.Н. Природоведение: учеб. для 3,5 кл. сред. шк. - 8-е изд. - М.: Просвещение, 1992. - с. 165, задания и вопрос. 3.

2. Каким образом дают название метеоритным потокам?

3. Чем метеорит отличается от метеора?

4. * Представьте, что вы обнаружили метеорит и хотите написать об этом статью в журнал. Как бы выглядела эта статья?

Мы развенчали падающие звезды в качестве подлинных звезд - этих величайших небесных тел - и признали в них лишь ничтожные камешки. Эти камешки, пока они несутся вне земной атмосферы, - ничтожные, но все-таки небесные тела, и изучение их как таковых увело нас в глубины межпланетного пространства, заставило обратиться к другим и гораздо более значительным небесным телам - кометам. Но, попав в атмосферу Земли и светясь в ней короткое время, и метеор и метеорит уже перестают быть по существу небесными телами. Их полет в воздухе сопровождается особыми интересными явлениями, причем маленький камешек-метеор уже перестает при этом быть таковым, почему некоторые ученые предлагают все такие камешки называть метеорными телами, а под метеором понимать лишь само явление свечения во время его полета в атмосфере. Нам кажется, что в этом нет особой нужды и это вызывает свои неудобства, но уделим некоторое внимание тому, почему и как метеоры, оказавшись в атмосфере, становятся видимы, и что нам дает изучение этих явлений для познания нашей собственной планеты...

Беззвучно катящаяся по небу звезда, осколок далекой кометы и орудийные залпы, обстрел и бомбежка мирных тыловых городов, что, кажется, может быть общего между ними?!

1918 год... Немецкие армии рвутся к Парижу, но они далеко, определенно известно, что враг не ближе 120 км от города, оснований для паники нет. И вдруг... в окрестностях Парижа начинают рваться большие снаряды. Что же думать... Где враг?

Оказалось, что немцы создали сверхдальнобойные пушки, которые могли стрелять на дистанцию в 120 км. Эти орудия выбрасывали снаряды массой 120 кг из ствола длиною 37 м с начальной скоростью 1700 м/с под углом 55° к горизонту. В этом и заключался главный секрет сверхдальности. Быстро прорезав нижние плотные слои воздуха, снаряд забирался в верхние разреженные слои земной атмосферы, далеко в стратосферу, на высоту 40 км. Там разреженный воздух мало тормозил его движение, и вместо нескольких десятков километров снаряд пролетал сотню километров. Надо сказать, что стрельба немцев не была очень меткой; они рассчитывали больше на создание паники.

Известную долю неточности их стрельбы обусловила невозможность рассчитать точно условия полета снаряда на большой высоте. Ни плотность, ни состав, ни движение воздуха на этой высоте не были тогда известны; атмосфера на этих высотах не была еще изучена. Действительно, даже стратостаты, поднимавшие впоследствии людей с научными приборами, достигли высоты всего лишь около 22 км, а воздушные шары с самопишущими приборами без людей поднимались до 30 км. Ракеты, поднимающиеся на высоты более 100 км, стали пускать только после второй мировой войны.

О более высоких слоях воздуха раньше можно было составить представление лишь путем изучения происходящих там явлений, и метеоры, ежедневно пронизывающие их, все еще доставляют один из лучших косвенных методов такого рода. Лишь совсем недавно на вооружение ученых поступило такое мощное средство всестороннего исследования верхних слоев атмосферы, как искусственные спутники Земли. Вот почему усиленное изучение метеоров было важным пунктом программы проведения Международного геофизического года (1957-1958 гг.).

Метеоры являются невольными разведчиками стратосферы, и наша задача - научиться их опрашивать. Вот к чему приводят результаты такого опроса, начатого всего лишь лет сорок назад.

Метеорные тела вторгаются в атмосферу со скоростью, примерно в сотню раз большей скорости ружейной пули в начале ее пути. Как известно, кинетическая энергия, т. е. энергия движения тела, равна половине произведения квадрата его скорости на его массу. Вся эта энергия метеора идет на излучение тепла и света, на раздробление тела на молекулы, на разрушение молекул тела и воздуха на атомы и на ионизацию этих атомов.

Молекулы и атомы твердого тела, и метеора в том числе, часто расположены в некотором определенном порядке, образуя так называемую кристаллическую решетку. С чудовищной скоростью метеор врезается в воздух, и молекулы, из которых состоит воздух, с силой втискиваются в молекулярную решетку метеорного тела. Чем дальше влетает метеор в земную атмосферу, тем плотнее там воздух и тем больше и больше молекулярная решетка метеорного тела подвергается ожесточенной бомбардировке молекулами воздуха.

Лобовая часть метеора в конце концов получает ливень таких ударов, при которых молекулы воздуха вонзаются в метеор, проникают внутрь него, как снаряд в железобетонный дот. Этот «обстрел» передней поверхности нарушает связи между молекулами и атомами тела, ломает кристаллические решетки и вырывает из них отдельные молекулы вещества метеора, накапливающиеся уже в беспорядке на его лобовой поверхности. Часть молекул расщепляется на атомы, из которых они состоят. Некоторые атомы от ударов даже теряют входящие в их состав электроны, т. е. ионизуются, приобретая электрический заряд. Отколотые электроны, время от времени скользя слишком близко к ионам, захватываются ими на «вакантные места» и при этом, в соответствии с законами физики, излучают свет. Каждый атом излучает свои длины волн, отчего спектр метеора и есть ярко-линейчатый спектр, характерный для свечения разреженных газов.

Чем глубже в атмосферу, тем быстрее идет разрушение метеора и сильнее его свечение. На высоте ниже 130 км над Землей оно уже достаточно, чтобы сделать метеор видимым для нас.

Молекулы воздуха тоже страдают при ударах, но они прочнее молекул и атомов метеора и реже ионизуются, кроме того, они не так сильно сконцентрированы и потому дают столь слабое свечение, что линии газов, составляющих атмосферу (в основном кислорода и азота), мы в спектре метеора не замечаем.

Ниже в атмосфере воздух перед лобовой поверхностью метеора образует «шапку», состоящую из сжатых газов, в которые превращается метеор, и отчасти - из газов сжимаемого им перед собою воздуха. Струи сжатого и горячего газа обтекают метеорное тело с боков, отрывая от него новые частицы и ускоряя разрушение камешка.

Более крупные метеорные тела проникают глубоко в атмосферу, не успев целиком превратиться в газ. Для них торможение приводит к потере их космической скорости на высоте 20-25 км. Из этой «точки задержки», как ее называют, они падают уже почти отвесно, как бомбы с пикирующего самолета.

В низких слоях атмосферы обилие твердых частиц, сорванных с боков метеорного тела и отставших от него, образует за ним «дымный» черный или белый пылевой след, часто видимый при полете ярких болидов. Когда такое тело достаточно велико, то в разрежение, образующееся за ним, устремляется воздух. Это, а также сжатие и разрежение воздуха на пути большого метеорного тела вызывают звуковые волны. Поэтому полет ярких болидов сопровождается звуками, похожими иногда на выстрелы и на раскаты грома.

Как яркость, так и цвет метеоров и болидов создается не накаливающейся твердой поверхностью, которая ничтожно мала, а частицами вещества, обращенными в газ. Поэтому цвет их зависит не столько от температуры, сколько от того, какие из светлых линий в его видимом спектре являются наиболее яркими. Последнее зависит от химического состава тела и от условий его свечения, определяемых его скоростью. В общем все-таки красноватый цвет сопровождает меньшую скорость движения.

Такова в кратких чертах картина свечения метеорных тел в атмосфере, которую рисует современная наука.

Остановимся на некоторых подробностях этих явлений, изученных совсем недавно и связанных с изучением стратосферы. Например, исследование торможения метеоров проливает свет на изменения плотности воздуха с высотой. Чем больше плотность воздуха, тем сильнее, конечно, торможение, но торможение зависит и от скорости движения и от формы тела, отчего самолетам, автомобилям и даже локомотивам стремятся придать «обтекаемую форму». Тело «обтекаемой» формы лишено острых углов и рассчитано так, чтобы при быстром движении воздух обтекал его, встречая как можно меньше помех, сопротивления, и потому меньше тормозил движение.

Артиллерийские снаряды испытывают в полете огромное сопротивление воздуха. Метеорные же тела летят в воздухе со скоростью, в десятки раз превышающей скорость снаряда, и для них сопротивление воздуха еще больше. По снимку метеора, полученному однажды в Москве любителями астрономии, членами Астрономо-геодезического общества, фотокамерой с сектором, вращающимся перед объективом, для одного метеора нашли торможение (которое часто называют отрицательным ускорением) около 40 км/с². Это в 400 раз превосходит ускорение свободного падения тел под действием силы тяжести! И это на высоте 40 км над Землей, где воздух так разрежен, что человек там немедленно погиб бы от удушья.

Для того чтобы звук был слышен, воздух должен иметь определенную плотность. В безвоздушном пространстве звуков нет, и как колокольчик в вакууме под колпаком воздушного насоса на лекции по физике старается напрасно, так и в безвоздушном межпланетном пространстве мировые катастрофы происходят беззвучно. Грандиозный взрыв «новой звезды» или столкновения звезд (впрочем, почти невероятные) происходят так бесшумно, что, находясь вблизи от них в момент катастрофы, мы бы даже не обернулись, если бы это произошло у нас «за спиной».

Характер звуков при полете болидов говорит нам многое о плотности верхних слоев атмосферы.

Хорошую возможность изучения воздушных течений в высоких слоях атмосферы нам доставляют следы, остающиеся в небе после полета ярких метеоров и болидов; 20-80 км - вот их высота над нашими головами.

Сколько времени видны пылевые следы, зависит от условий освещения и от количества вещества, превращенного в мельчайшую взвешенную в воздухе пыль. Играют тут роль и воздушные течения, разносящие пылинки в стороны и «заметающие» след болида. В исключительных случаях след болида бывает видим в течение 5-6 часов.

Серебристые следы, видимые ночью после пролета быстрых и ярких метеоров, имеют другую природу, - они газовые и лежат всегда выше 80 км. При огромной скорости соударяющихся молекул вдоль пути метеора происходит сильная ионизация молекул воздуха, чему помогает и ультрафиолетовое излучение метеора. В образовавшемся за метеором цилиндре ионизованного воздуха медленно происходит воссоединение ионов с электронами, медленно потому, что при большой разреженности воздуха на такой высоте наэлектризованные частички далеки друг от друга и проходят длинный путь, прежде чем воссоединятся снова. Процесс их воссоединения, как всегда, сопровождается излучением линий спектра. В то же время ионизованные молекулы разлетаются в стороны, и ширина следа растет. От этого яркость следа, конечно, ослабевает, но иные следы (видимые обычно только несколько секунд) остаются на небе среди звезд иногда даже в продолжение часа.

Непрестанная ионизация воздуха метеорами способствует поддержанию на высотах от 80 до 300- 350 км над Землей ионизованных слоев. Основная причина их возникновения - ионизация воздуха солнечными световыми (ультрафиолетовыми) и корпускулярными лучами (потоками наэлектризованных частиц).

Может быть, не все знают, что именно этим слоям мы обязаны тем, что на коротких волнах можно переговариваться с любителями-коротковолновиками, живущими на Малайском Архипелаге или в Южной Африке. Радиосигналы, излучаемые передатчиком и падающие на эти слои под определенным углом, благодаря его электропроводности отражаются как от зеркала. Они не уходят в мировое пространство, а, отразившись вниз, почти неослабленные принимаются где-либо очень далеко от передающей радиостанции.

Это явление отражения радиоволн связано и с длиной радиоволны. Можно изучить плотность ионов в электропроводящем атмосферном слое, меняя длину волны и определяя, когда радиопередача прекратится, т. е. когда радиоволны не отразятся, а ускользнут из земной атмосферы. Другие радионаблюдения позволяют следить за высотой слоев, которая несколько колеблется.

Как и можно было ожидать, обнаружено, что изменение числа метеоров, влетающих в атмосферу, и даже появление отдельных ярких болидов меняет силу радиоприема на коротких волнах, вызывая быстрые, кратковременные изменения электропроводности воздуха благодаря его ионизации на высотах 50-130 км. Большие возмущения в силе радиоприема далеких станций были, например, отмечены на Слуцкой обсерватории под Ленинградом в часы метеорного дождя Драконид 9 октября 1933 г.

Так радиосвязь неожиданным образом реагирует на появление бренных останков комет, светил, казалось бы, таких безразличных для повседневных дел на нашей Земле!

Около ста лет назад известный московский астроном В.К. Цераский случайно заметил летом необычные серебристые облака, светившиеся на ночном небе в северной его части. Это не могли быть обычные облака, плавающие не выше 8, в крайнем случае 12 км над Землей. Если б это были они, то Солнце, находящееся под горизонтом, не могло бы достать их своими лучами и заставить так ярко светиться. Это должны были быть необыкновенно высокие облака. И действительно, сравнение зарисовок их положения на фоне звезд, сделанное одновременно с двух разных мест (В.К. Цераским и А.А. Белопольским), позволило первому из них впервые доказать, что эти облака разгуливают на высоте 80- 85 км. С тех пор их наблюдали не раз всегда летом и в северной части неба, вблизи горизонта, так как даже на такой большой высоте и только при этих условиях солнечные лучи могут их осветить из-под горизонта.

Эти ночные «светящиеся» или «серебристые» облака, как их называют, упорно держатся всегда на высоте 82 км. Быть может, эти облака, лежащие близ нижней границы погасания метеоров, образованы кристалликами льда, намерзшими на пылинки.

Что в воздухе на высоте 80 км, где он, казалось бы, должен быть так «чист» (вспомните чистоту воздуха хотя бы в горах!), есть пыль, это еще, казалось бы, куда ни шло. Но что бы вы подумали, если бы вам кто-либо сказал о металлической атмосфере над нашей головой!


Мы справедливо отвергли наивные представления древности о «небесной тверди», о «хрустальных небесах» над нашей головой и вдруг признаем... чуть ли не металлическое небо!

В самом деле, в 1938 г. спектроскоп в руках французских астрофизиков Кабанна, Дюфэ и Гози с убийственным хладнокровием показал, что в спектре ночного неба постоянно есть известная желтая линия натрия и линии кальция. Кроме этих металлов, ученые надеются обнаружить в атмосфере еще алюминий и даже железо! (Кстати сказать, чтобы получить спектр света ночного неба, которое и так-то кажется почти черным, т. е. почти не испускающим света, приходится делать многочасовые экспозиции.) Металлы, найденные в атмосфере, относятся к высоте 130 км над Землей и, конечно, никакого твердого купола не образуют. Отдельные атомы названных металлов единицами насчитываются среди многочисленных молекул крайне разреженного воздуха на этой высоте. По-видимому, атомы металлов рассеиваются в атмосфере при испарении метеоров и светятся при соударении с другими частичками. В самом деле, так или иначе, а продукты испарения метеоров, т. е. по преимуществу атомы тяжелых элементов, должны не только оставаться, но и накапливаться в атмосфере. Будут ли они там светиться или нет - это вопрос особый, но нет никаких причин, чтобы, рассеиваясь на высоте порядка сотни километров, они могли тотчас же опуститься на землю.

Итак, метеорное вещество есть везде, оно лежит у нас под ногами, оно непрерывно путешествует в пространстве, оно висит у нас над головой.

Изучение метеорных явлений дало много ценного для познания стратосферы. Не все из этих выводов, как, например, первые выводы зарубежных ученых Линдемана и Добсона, являются бесспорными в очень молодой науке о движении метеоров в атмосфере, но они все же иллюстрируют, какие возможности тут открываются перед нами. А выводы эти вот какие. Исходя из своей теории свечения метеорных тел в атмосфере, рассматривающей взаимодействие с воздухом летящего метеорного тела, упомянутые авторы в 1923 г. объяснили особенности в распределении по высоте точек погасания метеоров и заключили, что на высоте около 60 км воздух сильно нагрет. Они вычислили там температуру, и она оказалась равной +30°, а позднейшие вычисления привели даже к температуре 110°. (Не будем говорить, что на этой высоте температура оказалась выше точки кипения воды, потому что при тех малых давлениях воздуха, какие имеют место в стратосфере, температура кипения воды много ниже, чем 100°C.)

Это открытие явилось сюрпризом, потому что непосредственные промеры температуры до высоты в 30 км показывали сначала быстрое ее падение с высотой, а с 11 км (нижней границы стратосферы) начинался слой с почти постоянной температурой в 50° мороза, независимо от времени года и климатического пояса местности. Вернее говоря, стратосфера ведет себя даже «шиворот навыворот»: зимой, даже в полярных странах, ее температура около -45°, а летом и в тропиках около -90°. Тропосфера, или нижний слой земной атмосферы, характеризуется падением температуры с высотой и над экватором распространяется выше (до 15-16 км), чем у полюсов Земли (9-10 км). Эта верхняя ее граница - конец изменения температуры - и определяет начало стратосферы, до известной степени объясняя неожиданное распределение температуры стратосферы по климатическим поясам, так как температура стратосферы равна температуре верхней границы тропосферы. Сезонные же и неожиданные изменения ее температуры тоже связаны с сезонным изменением в высоте границы тропосферы, так как воздух нагревается преимущественно снизу, землей, а зимой земля менее нагрета и прогревает атмосферу до меньшей высоты.


Изучение метеоров неожиданно открыло существование нового повышения температуры с высотой, как говорят, верхней температурной инверсии в стратосфере. Стратонавту, поднявшемуся в меховом костюме в стратосферу, если он сможет подняться выше 40 км, будет, пожалуй, труднее защищаться от жары, которая сменит там 50-градусный мороз, господствующий ниже.

Существование верхней температурной инверсии подтверждается изучением торможения метеоров по фотографиям с вращающимся сектором. Это торможение уменьшается в той самой области, где предположено повышение температуры, как и должно быть. В последнее время температура +50°C на высоте 60 км найдена и прямыми измерениями при помощи приборов, установленных на ракетах, запускавшихся в стратосферу.

С точки зрения изучения стратосферы интересно также, что скорость расползания газовых светящихся метеорных следов связана с давлением и температурой окружающих слоев воздуха и позволяет оценить их величину.

Раньше стратосферу считали областью невозмущенного покоя, застывшего в неподвижности воздушного океана, относя всякие ветры и перемещения воздушных масс к области тропосферы. Поэтому полкой неожиданностью явилось обнаружение советскими учеными И.С. Астаповичем, В.В. Федынским и другими воздушных течений на высоте 80 км над Землей, со скоростями, доходящими до 120 м/с, относящих метеорные следы преимущественно к востоку, но иногда и в другую сторону; встречаются даже и вертикальные течения.

Изучение метеоров в связи со свойствами стратосферы только что началось, и приведенные данные являются лишь первым его даром, могущим убедить в пользе этой отрасли астрономии даже наиболее скептически настроенных людей.

Содержание статьи

МЕТЕОР. Слово «метеор» в греческом языке использовали для описания различных атмосферных феноменов, но теперь им обозначают явления, возникающие при попадании в верхние слои атмосферы твердых частиц из космоса. В узком смысле «метеор» – это светящаяся полоса вдоль трассы распадающейся частицы. Однако в обиходе этим словом часто обозначают и саму частицу, хотя по-научному она называется метеороидом. Если часть метеороида достигает поверхности, то ее называют метеоритом. В народе метеоры называют «падающими звездами». Очень яркие метеоры называют болидами; иногда этим термином обозначают только метеорные события, сопровождающиеся звуковыми явлениями.

Частота появления.

Количество метеоров, которые может увидеть наблюдатель за определенный период времени, не постоянно. В хороших условиях, вдали от городских огней и при отсутствии яркого лунного света, наблюдатель может заметить 5–10 метеоров в час. У большинства метеоров свечение продолжается около секунды и выглядит слабее самых ярких звезд. После полуночи метеоры появляются чаще, поскольку наблюдатель в это время располагается на передней по ходу орбитального движения стороне Земли, на которую попадает больше частиц. Каждый наблюдатель может видеть метеоры в радиусе около 500 км вокруг себя. Всего же за сутки в атмосфере Земли возникают сотни миллионов метеоров. Полная масса влетающих в атмосферу частиц оценивается в тысячи тонн в сутки – ничтожная величина по сравнению с массой самой Земли. Измерения с космических аппаратов показывают, что за сутки на Землю попадает также около 100 т пылевых частиц, слишком мелких, чтобы вызывать появление видимых метеоров.

Наблюдение метеоров.

Визуальные наблюдения дают немало статистических данных о метеорах, но для точного определения их яркости, высоты и скорости полета необходимы специальные приборы. Уже около века астрономы используют камеры для фотографирования метеорных следов. Вращающаяся заслонка (обтюратор) перед объективом фотокамеры делает след метеора похожим на пунктирную линию, что помогает точно определять интервалы времени. Обычно с помощью этой заслонки делают от 5 до 60 экспозиций в секунду. Если два наблюдателя, разделенные расстоянием в десятки километров, одновременно фотографируют один и тот же метеор, то можно точно определить высоту полета частицы, длину ее следа и – по интервалам времени – скорость полета.

Начиная с 1940-х годов астрономы наблюдают метеоры с помощью радара. Сами космические частицы слишком малы, чтобы их зарегистрировать, но при полете в атмосфере они оставляют плазменный след, который отражает радиоволны. В отличие от фотографии радар эффективен не только ночью, но также днем и в облачную погоду. Радар замечает мелкие метеороиды, недоступные фотокамере. По фотографиям точнее определяется траектория полета, а радар позволяет точно измерять расстояние и скорость. См . РАДИОЛОКАЦИЯ; РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ.

Для наблюдения метеоров используют и телевизионную технику. Электронно-оптические преобразователи позволяют регистрировать слабые метеоры. Используются и камеры с ПЗС-матрицами. В 1992 при записи на видеокамеру спортивных соревнований был зафиксирован полет яркого болида, закончившийся падением метеорита.

Скорость и высота.

Скорость, с которой метеороиды влетают в атмосферу, заключена в пределах от 11 до 72 км/с. Первое значение – это скорость, приобретаемая телом только за счет притяжения Земли. (Такую же скорость должен получить космический аппарат, чтобы вырваться из гравитационного поля Земли.) Метеороид, прибывший из далеких областей Солнечной системы, вследствие притяжения к Солнцу приобретает вблизи земной орбиты скорость 42 км/с. Орбитальная скорость Земли около 30 км/с. Если встреча происходит «в лоб», то их относительная скорость 72 км/с. Любая частица, прилетевшая из межзвездного пространства, должна иметь еще большую скорость. Отсутствие столь быстрых частиц доказывает, что все метеороиды – члены Солнечной системы.

Высота, на которой метеор начинает светиться или отмечается радаром, зависит от скорости входа частицы. Для быстрых метеороидов эта высота может превышать 110 км, а полностью частица разрушается на высоте около 80 км. У медленных метеороидов это происходит ниже, где больше плотность воздуха. Метеоры, сравнимые по блеску с ярчайшими звездами, образуются частицами с массой в десятые доли грамма. Более крупные метеороиды обычно разрушаются дольше и достигают малых высот. Они существенно тормозятся из-за трения в атмосфере. Редкие частицы опускаются ниже 40 км. Если метеороид достигает высот 10–30 км, то его скорость становится менее 5 км/с, и он может упасть на поверхность в виде метеорита.

Орбиты.

Зная скорость метеороида и направление, с которого он подлетел к Земле, астроном может вычислить его орбиту до столкновения. Земля и метеороид сталкиваются в том случае, если их орбиты пересекаются и они одновременно оказываются в этой точке пересечения. Орбиты метеороидов бывают как почти круговыми, так и предельно эллиптичными, уходящими дальше планетных орбит.

Если метеороид приближается к Земле медленно, значит, он движется вокруг Солнца в том же направлении, что и Земля: против часовой стрелки, если смотреть с северного полюса орбиты. Большинство орбит метеороидов выходит за пределы земной орбиты, и их плоскости наклонены к эклиптике не очень сильно. Падение почти всех метеоритов связано с метеороидами, имевшими скорости менее 25 км/с; их орбиты полностью лежат внутри орбиты Юпитера. Большую часть времени эти объекты проводят между орбитами Юпитера и Марса, в поясе малых планет – астероидов. Поэтому считается, что астероиды служат источником метеоритов. К сожалению, мы можем наблюдать только те метеороиды, которые пересекают орбиту Земли; очевидно, эта группа недостаточно полно представляет все малые тела Солнечной системы.

У быстрых метеороидов орбиты более вытянуты и сильнее наклонены к эклиптике. Если метеороид подлетает со скоростью более 42 км/с, то он движется вокруг Солнца в направлении, противоположном направлению движения планет. Тот факт, что по таким орбитам движутся многие кометы, указывает, что эти метеороиды являются осколками комет.

Метеорные потоки.

В некоторые дни года метеоры появляются гораздо чаще, чем обычно. Это явление называют метеорным потоком, когда наблюдаются десятки тысяч метеоров в час, создавая изумительное явление «звездного дождя» по всему небу. Если проследить на небе пути метеоров, то покажется, что все они вылетают из одной точки, называемой радиантом потока. Это явление перспективы, подобное сходящимся у горизонта рельсам, указывает, что все частицы движутся по параллельным траекториям.

Астрономы выделили несколько десятков метеорных потоков, многие из которых демонстрируют ежегодную активность с продолжительностью от нескольких часов до нескольких недель. Большинство потоков названо по имени созвездия, в котором лежит их радиант, например, Персеиды, имеющие радиант в созвездии Персея, Геминиды – с радиантом в Близнецах.

После изумительного звездного дождя, вызванного потоком Леониды в 1833, В.Кларк и Д.Олмстед предположили, что он связан с определенной кометой. В начале 1867 К.Петерс, Д.Скиапарелли и Т.Оппольцер независимо доказали эту связь, установив схожесть орбит Кометы 1866 I (Комета Темпля – Тутля) и метеорного дождя Леониды 1866.

Метеорные потоки наблюдаются, когда Земля пересекает траекторию роя частиц, образовавшегося при разрушении кометы. Приближаясь к Солнцу, комета нагревается его лучами и теряет вещество. За несколько столетий под действием гравитационных возмущений от планет эти частицы образуют вытянутый рой вдоль орбиты кометы. Если Земля пересекает этот поток, мы ежегодно можем наблюдать звездный дождь, даже если сама комета в этот момент далеко от Земли. Поскольку частицы распределены вдоль орбиты неравномерно, интенсивность дождя год от года может меняться. Старые потоки настолько расширены, что Земля пересекает их несколько суток. В сечении некоторые потоки скорее напоминают ленту, чем шнур.

Возможность наблюдать поток зависит от направления прихода частиц к Земле. Если радиант расположен высоко на северном небе, то из южного полушария Земли поток не виден (и наоборот). Метеоры потока можно увидеть, только если радиант находится над горизонтом. Если же радиант попадает на дневное небо, то метеоры не видны, но их можно засечь радаром. Узкие потоки под влиянием планет, особенно Юпитера, могут изменять свои орбиты. Если при этом они больше не пересекают земную орбиту, то становятся ненаблюдаемыми.

Декабрьский поток Геминиды связан с остатками малой планеты или неактивного ядра старой кометы. Есть указания, что Земля сталкивается и с другими группами метеороидов, порожденных астероидами, но эти потоки очень слабы.

Болиды.

Метеоры, которые ярче самых ярких планет, часто называют болидами. Иногда наблюдаются болиды ярче полной луны и крайне редко такие, что вспыхивают ярче солнца. Болиды возникают от наиболее крупных метеороидов. Среди них много осколков астероидов, которые плотнее и крепче, чем фрагменты кометных ядер. Но все равно большинство астероидных метеороидов разрушается в плотных слоях атмосферы. Некоторые из них падают на поверхность в виде метеоритов. Из-за высокой яркости вспышки болиды кажутся значительно ближе, чем в действительности. Поэтому необходимо сопоставить наблюдения болидов из различных мест, прежде чем организовывать поиск метеоритов. Астрономы оценили, что ежедневно по всей Земле около 12 болидов заканчивается падением более чем килограммовых метеоритов.

Физические процессы.

Разрушение метеороида в атмосфере происходит путем абляции, т.е. высокотемпературного отщепления атомов с его поверхности под действием налетающих частиц воздуха. Остающийся за метеороидом горячий газовый след излучает свет, но не в результате химических реакций, а вследствие рекомбинации возбужденных ударами атомов. В спектрах метеоров видно множество ярких эмиссионных линий, среди которых преобладают линии железа, натрия, кальция, магния и кремния. Видны также линии атмосферного азота и кислорода. Определенный по спектру химический состав метеороидов согласуется с данными о кометах и астероидах, а также о межпланетной пыли, собранной в верхних слоях атмосферы.

Многие метеоры, особенно быстрые, оставляют за собой светящийся след, наблюдаемый секунду или две, а порой – значительно дольше. Когда падали крупные метеориты, след наблюдался несколько минут. Свечением атомов кислорода на высотах ок. 100 км можно объяснить следы длительностью не более секунды. Более долгие следы возникают из-за сложного взаимодействия метеороида с атомами и молекулами атмосферы. Пылевые частицы вдоль траектории болида могут образовать яркий след, если верхние слои атмосферы, где они рассеяны, освещены Солнцем, когда у наблюдателя внизу глубокие сумерки.

Скорости метеороидов гиперзвуковые. Когда метеороид достигает сравнительно плотных слоев атмосферы, возникает мощная ударная волна, и сильные звуки могут разноситься на десятки и более километров. Эти звуки напоминают раскаты грома или далекую канонаду. Из-за большого расстояния звук приходит на минуту или две позже появления болида. Несколько десятилетий астрономы спорили о реальности аномального звука, который некоторые наблюдатели слышали непосредственно в момент появления болида и описывали, как треск или свист. Исследования показали, что причиной звука являются возмущения электрического поля вблизи болида, под влиянием которых издают звук близкие к наблюдателю объекты – волосы, мех, деревья.

Метеоритная опасность.

Крупные метеороиды могут разрушать космические аппараты, а мелкие пылинки постоянно истачивают их поверхность. Удар даже небольшого метеороида может сообщить спутнику электрический заряд, который выведет из строя электронные системы. Риск в общем-то невелик, но все же запуски космических аппаратов иногда откладывают, если ожидается сильный метеорный поток.

МЕТЕОРЫ И МЕТЕОРИТЫ

Метеором называется космическая частица, которая попадает в земную атмосферу на высокой скорости и полностью сгорает, оставляя за собой яркую светящуюся траекторию, в просторечии называемую падающей звездой. Продолжительность этого явления и цвет траектории могут меняться, хотя большинство метеоров появляется и исчезает за долю секунды.

Метеорит представляет собой более крупный фрагмент космического вещества, который не полностью сгорает в атмосфере и падает на Землю. Вокруг Солнца вращается множество таких фрагментов, различающихся по размеру от нескольких километров до менее 1 мм. Некоторые из них являются частицами комет, подвергшихся распаду или прошедших через внутреннюю часть Солнечной системы.

Единичные метеоры, которые попадают в земную атмосферу случайно, называются спорадическими метеорами. В определенное время, когда Земля пересекает орбиту кометы или остатков кометы, случаются метеорные дожди.

При наблюдении с Земли траектории метеоров во время метеорного дождя как будто исходят из определенной точки созвездия, которая называется радиантом метеорного дождя. Этот феномен возникает из-за того, что частицы находятся на одной орбите с кометой, фрагментами которой они являются. Они попадают в атмосферу Земли с определенного направления, соответствующего направлению орбиты при наблюдении с Земли. К наиболее заметным метеорным дождям относятся Леониды (в ноябре) и Персеиды (в конце июля). Ежегодно метеорный дождь бывает особенно сильным, когда частицы собираются в плотный рой на орбите и Земля проходит через этот рой.

Метеориты, как правило, бывают железными, каменными или железокаменными. Скорее всего, они образуются в результате столкновений между более крупными телами в поясе астероидов, когда отдельные каменные фрагменты разлетаются по орбитам, пересекающим орбиту Земли. Самый крупный из обнаруженных метеоритов весом в 60 тонн упал в Юго-Западной Африке. Считается, что падение очень крупного метеорита ознаменовало конец эпохи динозавров много миллионов лет назад. В 1969 году метеорит распался в небе над Мексикой, разбросав тысячи фрагментов на большой площади. Последующий анализ этих фрагментов привел к теории, согласно которой метеорит образовался в результате взрыва ближайшей сверхновой несколько миллиардов лет назад.

См. также статьи "Атмосфера Земли", "Кометы", "Сверхновая".

Из книги Энциклопедический словарь (М) автора Брокгауз Ф. А.

Из книги Большая Советская Энциклопедия (МЕ) автора БСЭ

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Все обо всем. Том 3 автора Ликум Аркадий

Из книги 3333 каверзных вопроса и ответа автора Кондрашов Анатолий Павлович

Из чего сделаны метеоры? Возможно, вам приходилось наблюдать картину, когда одна из звезд, вдруг сорвавшись с неба, устремлялась к земле. Долгое время эти падающие звезды оставались загадкой для людей. На самом деле эти объекты не имеют к настоящим звездам никакого

Из книги Астрономия автора Брейтот Джим

Чем метеоры отличаются от метеоритов? Метеоры, или «падающие звезды», – это кратковременные световые явления в земной атмосфере, вспышки, порождаемые частицами космического вещества (так называемыми метеорными телами), которые со скоростью в десятки километров в

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

МЕТЕОРЫ И МЕТЕОРИТЫ Метеором называется космическая частица, которая попадает в земную атмосферу на высокой скорости и полностью сгорает, оставляя за собой яркую светящуюся траекторию, в просторечии называемую падающей звездой. Продолжительность этого явления и цвет

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

Из книги 100 великих тайн Вселенной автора Бернацкий Анатолий

Метеориты Таблица

Из книги 100 великих загадок астрономии автора Волков Александр Викторович

Глава 13. Метеориты – гости из глубин Вселенной

Из книги 100 великих монастырей автора Ионина Надежда

Болиды – «поющие» метеориты Видимо, прежде чем начать разговор о болидах, необходимо выяснить, что же скрывается за этим термином? Следует сразу отметить, что четкого определения для этих небесных тел нет. А в целом это метеор, но только издающий при полете звуки.Вообще же

Из книги Страны и народы. Вопросы и ответы автора Куканова Ю. В.

Метеориты и дела земные Выше уже говорилось о том, что людям метеориты, или небесные камни, известны с незапамятных времен. По этой причине они и свои названия получали в соответствии с тем, откуда они явились на землю. Например, хетты и шумеры называли найденные на земле

Из книги Я познаю мир. Арктика и Антарктика автора Бочавер Алексей Львович

Метеориты помогли эволюции? С момента своего возникновения Земля регулярно подвергалась бомбардировкам. На ее поверхность рухнуло множество метеоритов. Большая часть этих «звездных камней» происходит из пояса астероидов, пролегающего между Марсом и Юпитером. Этот

Из книги автора

Из книги автора

Что такое Метеоры? Метеоры – известные греческие монастыри, уникальные в первую очередь тем, что все они расположены на вершинах скал, достигающих в высоту 600 метров над уровнем моря. Они были построены в Х веке, шесть до сих пор являются действующими.Скалы, на которых



error: Контент защищен !!